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Abstract

In this paper we study the most-demanding predicate
for computing the Euclidean Voronoi diagram of axes-
aligned line segments, namely the Incircle predicate.
In particular, we show that the Incircle predicate can
be answered by evaluating the signs of algebraic ex-
pressions of degree at most 6; this is half the algebraic
degree we get when we evaluate the Incircle predicate
using the current state-of-the-art approach.

1 Introduction

The Euclidean Voronoi diagrams of a set of line seg-
ments is one of the most well studied structures in
computational geometry. There are numerous algo-
rithms for its computation [5, 14, 16, 21, 7, 1, 15].
There are implementations that assume that numeri-
cal computations are performed exactly [19, 13], i.e.,
they follow the Exact Geometric Computation (EGC)
paradigm [22], as well as algorithms that use floating-
point arithmetic [10, 20, 9]; the latter class of algo-
rithms does not guarantee exactness, but rather topo-
logical correctness.

Efficient and exact predicate evaluation in geomet-
ric algorithms is of vital importance. It has to be
fast for the algorithm to be efficient. It has to be
complete in the sense that it has to cover all degener-
ate cases, which, despite that fact that they are “de-
generate” from the theoretical/analysis point-of-view,
they are commonplace in real world input. In the
EGC paradigm context, exactness is the bare mini-
mum that is required in order to guarantee the cor-
rectness of the algorithm. The efficiency of predicates
is typically measured in terms of the algebraic degree
of the expressions (in the input parameters) that are
computed during the predicate evaluation, as well as
the number (and possibly type) of arithmetic oper-
ations involved. Degree-driven approaches for either
the evaluation of predicates, or the design of the algo-
rithm as a whole, has become an important question
in algorithm/predicate design over the past few years
[3, 17, 2, 4, 6, 18].
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In this paper we are interested in the most demand-
ing predicate of the Euclidean Voronoi diagram of
axes-aligned line segments, namely the Incircle pred-
icate. Axes-aligned segments are typical input in-
stances in applications such as VLSI design [8]. Given
three sites S1, S2, and S3 we denote their Voronoi cir-
cle by V (S1, S2, S3) (if it exists). There are at most
two Voronoi circles defined by the triplet (S1, S2, S3);
the notation V (S1, S2, S3) refers to the Voronoi cir-
cle that “discovers” the sites S1, S2 and S3 in that
(cyclic) order, when we walk on the circle’s bound-
ary in the counterclockwise sense. Given a fourth
object O, which we call the query object, the Incir-
cle predicate Incircle(S1, S2, S3, O) determines the rel-
ative position O with respect to the disk D bounded
by V (S1, S2, S3). The predicate is positive if O does
not intersect D, zero if O touches the boundary but
not the interior of D, and negative if the intersection
of O with the interior of D is non-empty.

The Voronoi circle of three sites does not always
exist. In this paper, however, we assume that the In-
circle predicate is called during the execution of an
incremental algorithm for computing the Euclidean
Voronoi diagram of line segments, and thus the first
three sites are always related to a Voronoi vertex in
the diagram. Since we can circularly rotate the first
three arguments of the Incircle predicate, there are
only eight possible distinct configurations for the In-
circle predicate: PPPX, PPSX, PSSX and SSSX,
where P stands for point, S stands for segment, and
X stands for either P or S.

The predicates for the Euclidean Voronoi diagram
of line segments, in the context of an incremental con-
struction of the diagram, have already been studied
by Burnikel [3]. Assuming that the input is either
rational points, or segments described by their end-
points as rational points, Burnikel shows that the In-
circle predicate can be evaluated using polynomial ex-
pressions of degree 40 in the input quantities (see the
line dubbed “General [3]” in Table 1). Considering
Burnikel’s approach for the case of axes-aligned line
segments, and performing the appropriate simplifica-
tions in his calculations, we arrive at a new set of
algebraic degrees for the various configurations of the
Incircle predicate (see line dubbed “Axes-aligned [3]” in
Table 1); now the most demanding case the is PPSX
case, which gives algebraic degree 8 and 12, when the
query object is a point and a segment, respectively.
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PPPP PPSP PSSP SSSP

General [3] 4 12 16 32
Axes-aligned [3] 4 8 4 2

Axes-aligned [this paper] 4 6 4 2

PPPS PPSS PSSS SSSS

General [3] 8 24 32 40
Axes-aligned [3] 6 12 4 2

Axes-aligned [this paper] 6 6 4 2

Table 1: Maximum algebraic degrees for the eight
types of the Incircle predicate according to: [3] for
the general and the axes-aligned segments case, and
this paper. Top/Bottom table: the query object is a
point/segment.

In Section 3 we analyze the PPSX configurations
for the Incircle predicate, and show how we can reduce
the algebraic degrees for this case from 8 and 12, to
6. This is done by means of three key ingredients:
(1) we reduce the PPSP case to the PPPS case,
(2) we express the Incircle predicate as a difference
of distances, instead of as a difference of squares of
distances, and (3) we formulate the Incircle predicate
as an algebraic problem of the following form: we
compute a linear polynomial L(x) = l1x + l0 and a
quadratic polynomial Q(x) = q2x

2 + q1x + q0, such
that the result of the Incircle predicate is the sign of
L(x) evaluated at a specific root of Q(x).

2 Evaluation of the sign of L(x) = l1x + l0 at a
specific root of Q(x) = q2x

2 + q1x+ q0

Let L(x) = l1x + l0 and Q(x) = q2x
2 + q1x + q0

be a linear and a quadratic polynomial, respectively,
such that Q(x) has non-negative discriminant. Let
the algebraic degrees of l1, l2, q2, q1 and q0 be δl,
δl + 1, δq, δq + 1, and δq + 2, respectively. We are
interested in the sign of L(r), where r is one of the
two roots x1 ≤ x2 of Q(x). Below we assume, without
loss of generality, that l1, q2 > 0.

The obvious approach is to solve for r and substi-
tute into the equation of L(x). Let ∆Q = q21 − 4q2q0
be the discriminant of Q(x). Then r = (−q1 ±√

∆Q)/(2q2), which, in turn, yields L(r) = (l1q1 +

2l0q2 ±
√

∆Q)/(2q2). Computing sign(L(r)) is dom-
inated by the computation of sign(l1q1 + 2l0q2 ±
l1
√

∆Q). This ammounts to evaluating expressions
of algebraic degree at most 2(δl + δq + 1).

Observe now that evaluating the sign of L(r) is
equivalent to evaluating sign(Q(x?)), and possibly
sign(Q′(x?)), where x? = − l0l1 stands for the unique
root of L(x). Since Q(x?) = (l21q0 − l1q1l0 + q2l

2
0)/l21

and Q′(x?) = (l1q1 − 2q2l0)/l1, we conclude that, in
order to evaluate sign(L(r)), we need to consider ex-
pressions of algebraic degree at most 2δl+δq+2, which
is smaller than the algebraic degree of the approach
described early in this section, when δq > 0.

3 The PPSX case

Let A and B be the two points and CD be the seg-
ment defining the Voronoi circle. Without loss of gen-
erality, we may assume that CD is x-axis parallel,
since otherwise we can reduce Incircle(A,B,CD,Q)
to Incircle(R(B),R(A),R(CD),R(Q)), where R :
E2 → E2 denotes the reflection transformation about
the line y = x. Notice that R preserves cir-
cles and line segments, reverses orientations, and
is inclusion preserving. Finally, R maps an x-
axis parallel segment to a y-axis parallel segment,
and vice versa. Hence, Incircle(A,B,CD,QS) =
Incircle(R(B),R(A),R(CD),R(QS)).

The query object is a point. Let Q be the query
point. For the Voronoi circle V (A,B,CD) to be de-
fined, both A and B must be on the same side with
respect to `CD. Consider now Q: if Q does not
lie on the side of `CD that A and B lie, we have
Incircle(A,B,CD,Q) > 0. Testing the sideness of Q
against `CD simply means testing the sign of yQ−yC ,
which is a quantity of algebraic degree 1.

Suppose now that Q lies on the same side of `CD as
A andB, and let σ = Orientation(B,A,Q). In the spe-
cial case σ = 0 (i.e., Q lies on the line `BA), we observe
that Q lies inside the Voronoi circle V (A,B,CD) if
and only if Q lies on `BA and between A and B. This
can be determined by evaluating the signs of the dif-
ferences xA − xB , xQ − xA and xQ − xB , if xA 6= xB ,
or the signs of the differences yA − yB , yQ − yA and
yQ − yB , if xA = xB , which are all quantities of alge-
braic degree 1.

If σ 6= 0, we are going to reduce Incircle(A,B,CD,
Q) to Incircle(A,B,Q,CD) (see also Fig. 1). Sup-
pose first that σ < 0, i.e., Q lies to the right of the
oriented line `BA. Since A, B and CD appear on
V (A,B,CD) in that order when we traverse it in the
counterclockwise sense, we conclude that Q lies inside
V (A,B,CD) (resp., lies on V (A,B,CD)) if and only
if the circle defined by A, B and Q, does not inter-
sect with (resp., touches) the segment CD. Hence,
Incircle(A,B,CD,Q) = −Incircle(A,B,Q,CD). In a
similar manner, if σ > 0, i.e., Q lies to the left of the
oriented line `BA, Q lies inside V (A,B,CD) (resp.,
lies on V (A,B,CD)) if and only if the circle defined
by B, A andQ intersects the line segment CD. Hence,
Incircle(A,B,CD,Q) = Incircle(B,A,Q,CD).

Since the Incircle predicate, in the PPPS case, is
of degree 6 (cf. Table 1), while Orientation(B,A,Q) is
of degree 2, we deduce that Incircle(A,B,CD,Q) can
also be answered using quantities of algebraic degree
at most 6.

The query object is a segment. Let K be the cen-
ter of V (A,B,CD). K is an intersection point of
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Figure 1: Reducing Incircle(A,B,CD,Q) to Incircle(A,B,Q,CD). Left/Right two: Q lies to the left/right of the
oriented line `BA.

the bisector of A and B and the parabola with fo-
cal point A and directrix the supporting line `CD of
CD. Solving the corresponding system of equations
we deduce that, in the general case where A and B
are not equidistant from `CD (i.e., if yA 6= yB), the
x-coordinate of the Voronoi center xK , is a root of a
quadratic polynomial P (x) = p2x

2 + p1x + p0, while
the y-coordinate of the Voronoi center yK , is a root
of a quadratic polynomial T (y) = t2y

2 + t1y + t0.
Moreover, yK and xK are linearly dependent, i.e.,
yK = α1

β xK + α0

β . The algebraic degrees of p2, p1,
p0, t2, t1 and t0 are 1, 2, 3, 2, 3 and 4, respectively.
Furthermore, the degrees of α1, α0 and β are 1, 2 and
1, respectively. The roots x1 ≤ x2 of the polynomial
P (x) (resp., y1 ≤ y2 of T (y)) correspond to the centers
of the two possible Voronoi circles V (A,B,CD) and
V (B,A,CD). The roots of P (x) and T (y) of interest
are shown in the following two tables.

Relative positions of A, B and CD Root of P (x) of interest
yC < yA < yB or yA < yB < yC x1
yC < yB < yA or yB < yA < yC x2

Relative positions of A, B Root of T (y) of interest
xA < xB y2
xA > xB y1

Let QS be the query segment. The first step
is to compute Incircle(A,B,CD,Q) and, if needed,
Incircle(A,B,CD, S). If at least one ofQ and S lies in-
side V (A,B,CD), we get Incircle(A,B,CD,QS) < 0.
Otherwise, we need to determine if the line `QS in-
tersects V (A,B,CD). If `QS does not intersect the
Voronoi circle, we have Incircle(A,B,CD,QS) > 0. If
`QS intersects the Voronoi circle we have to check if
Q and S lie on the same or opposite sides of the line
`⊥QS(K) that goes through the Voronoi center K and
is perpendicular to `QS . Notice that since QS is axes-
aligned, the line `⊥QS(K) is either the line x = xK or
the line y = yK . Answering the Incircle predicate is
equivalent to comparing the distance of K from the
line `QS to the segment CD:

Incircle(A,B,CD, `QS) = d(K, `QS)−d(K,CD). (1)

Let us now examine and analyze the right-hand
side difference of (1). Since the segment CD is x-
axis parallel, d(K,CD) = |yK − yC |. Recall that yK
is a specific root of the quadratic polynomial T (y).

Therefore, determining the sign of yK − yC reduces
to evaluating the signs of T (yC) and T ′(yC). Assume
first that the segment QS is x-axis parallel. In this
case, the equation of `QS is y = yQ, and, hence,
d(K, `QS) = |yK − yQ|. As before, we can deter-
mine the sign of yK − yQ by evaluating the signs of
T (yQ) and T ′(yQ). Hence, Incircle(A,B,CD, `QS) =
|yK − yQ| − |yK − yC | = J1yK + J0, where J1 and J0
are given in the following table.

yK − yQ yK − yC J1 J0

≥ 0
≥ 0 0 yC − yQ
< 0 2 −yQ − yC

< 0
≥ 0 −2 yQ + yC
< 0 0 −yC + yQ

Clearly, if J1 = 0 we have Incircle(A,B,CD, `QS) =
sign(J0). Otherwise, evaluating Incircle(A,B,CD,
`QS) can be done as in Subsection 2. Since the al-
gebraic degrees of J1 and J0 are 0 and 1, respectively,
we can resolve the Incircle predicate using expressions
of algebraic degree at most 4.

Consider now the case where QS is y-axis paral-
lel. The equation of `QS is x = xQ, and, thus,
d(K, `QS) = |xK − xQ|. As in the x-axis parallel
case, xK is a specific known root of the quadratic
polynomial P (x), i.e., determining the sign of xK −
xQ amounts to evaluating the signs of P (xQ) and
P ′(xQ). Using the fact that yK = α1

β xK + α0

β , we
get Incircle(S1, S2, S3, `QS) = |xK −xQ|− |yK −yC | =
1
β (L1xK + L0), where L1 and L0 are given in the fol-
lowing table.

xK − xQ yK − yC L1 L0

≥ 0
≥ 0 −α1 + β β(yC − xQ)− α0

< 0 α1 + β β(−yC − xQ) + α0

< 0
≥ 0 −α1 − β β(yC + xQ)− α0

< 0 α1 − β β(−yC + xQ) + α0

If L1 = 0, Incircle(S1, S2, S3, `QS) = sign(L0)sign(β).
Otherwise, given that xK is a known root of P (x),
determining the sign of L1xK + L0 can be done as in
Subsection 2. Since the algebraic degrees of L1 and L0

are 1 and 2, respectively, evaluating the sign L1xK +
L0 reduces to computing the signs of expressions of
algebraic degree at most 5.

As we mentioned at the beginning of this subsec-
tion, if Incircle(A,B,CD, `QS) ≤ 0, we need to check
the position of Q and S with respect to the either line
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x = xK (if QS is x-axis parallel), or the line y = yK
(if QS is y-axis parallel). To check the position of I,
I ∈ {Q,S}, against the line x = xK , we simply have
to compute the signs of P (xI) and P ′(xI). The alge-
braic degrees of these quantities are 3 and 2, respec-
tively. In a symmetric manner, to check the position
of I, I ∈ {Q,S}, against the line y = yK , we simply
have to compute the signs of T (yI) and T ′(yI); their
algebraic degrees are 4 and 3, respectively.

For the special case yA = yB , we easily get xK =
1
2 (xA+xB) and yK = U2

U1
, where the algebraic degrees

of U2 and U1 are 2 and 1, respectively. If QS is x-axis
parallel, we need to determine the sign of the quantity
d(K, `QS) − d(K,CD) = |yK − yQ| − |yK − yC |, or,
equivalently, the signs of U1 and |U2 − U1yQ| − |U2 −
U1yC |, which are of algebraic degree 1 and 2, respec-
tively. If QS is y-axis parallel, we need to evaluate the
sign of d(K, `QS)−d(K,CD) = |xK−xQ|−|yK−yC |,
or, equivalently, the signs of U1 and |U1(xA + xB −
2xQ)| − 2|U2 − U1yQ|, which are also of algebraic de-
gree 1 and 2, respectively.

Recalling that, in order to evaluate Incircle(A,
B,CD,QS), the first step is to evaluate Incircle(A,
B,CD,Q), and, if needed, Incircle(A,B,CD, S), we
conclude that in order to evaluate the Incircle predi-
cate in the PPSS case, we need to compute the sign
of expressions of algebraic degree at most 6.

4 Future work

Our analysis is so far theoretical. We would like
to implement the approach presented in this paper
and compare it against the generic implementation
in CGAL [12]. Finally, we would like to study and
implement the rest of the predicates involved in the
computation of the Voronoi diagram, when the line
segment are axes-aligned.
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